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This paper studies finite difference schemes for solving the generalized non-
linear Schodinger (GNLS) equationu; — uyX 4+ q(Juj®)u= f(x, t)u. A new lin-
earlized Crank—Nicolson-type scheme is presented by applying an extrapolation
technique to the real coefficient of the nonlinear term in the GNLS equation. Sev-
eral schemes, including Crank—Nicolson-type schemes, Hopscotch-type schemes,
split step Fourier scheme, and pseudospectral scheme, are adopted for solving three
model problems of GNLS equation which arise from many physical problems.
with q(s) =2, q(s) =In(1+s), andq(s) = —4s/(1+s), respectively. The numer-
ical results demonstrate that the linearized Crank—Nicolson scheme is efficient and
robust. © 1999 Academic Press

Key Words:difference schemes; generalized Sahinger equation; linearized
Crank—Nicolson scheme.

1. INTRODUCTION

The nonlinear Scludinger equation (NLS) describes many physical phenomena and
important applications in fluid dynamics, nonlinear optics, and plasma physics. The |
equation has been investigated analytically and numerically by many authors. For exa
Taha and Ablowitz compared eight numerical methods for the NLS in [11].

We consider the generalized nonlinear $ctinger (GNLS) equation

iU — Uex + g(Juf>u = 0,

which arises in plasma physics; see, for example, [1, 2, 6, 7]. In the GNLS equation
nonlinear termu|?u of the NLS is extended to the general fogtju|?)u, and the function

1 This work was supported in part by the National Science Foundation of China and City University of H
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g(s) can be chosen ags) =sP, p>0,q(s)=c(1—e7%),q(s) = ﬁs org(s)=In(1+s)

in different physical problems. Numerical methods for the GNLS equation are studiec
[4, 5, 8, 9]. In [8], a pseudospectral solution of the GNLS equation is considered. Cons
vative difference schemes for the GNLS equation are presented in [4, 5]. In this paper,
consider the initial-boundary value problem of the GNLS equation,

iUy — Uy + q(Jul>u = f(x,t)iu, X e[x, Xxgl,t > 0, (1.1)
Ulx=x, =0,  Ulx=xx =0, (1.2)
Ult=0 = Uo(X), (1.3)

where f (x, t) is a real function. We will present several difference schemes for the GNL
equation in (1.1)—(1.3) and evaluate their efficiency.
The initial-boundary value problem (1.1)—(1.3) satisfies the two conservative laws

H = lluC, OIIE, = u¢, 0)IF,, (1.4)
and
Et) = E(O)—i—/ot /XLXRf(x,r)-;TQu(x, )% dx dr, (1.5)
where
E® = 100l + [ QUK. D dx, (L6)
and

S
Q9 = /0 a2)dz.

A conservative difference scheme for (1.1)—(1.3) proposed in [5] is given by

1Q(Ju7) - (lupP)

. 1

I(UJn+1)I__§((UIn+1>X)?+(UJn)XY)—i_Z }Un+1}2— ’Un’2 (UJnJrl—'_UJn)

J J
= %fj”+l/2(up+l+uj“), 1<j<J-1Ln=012..., (1.7)
Uy =Uj=o0, (1.8)
UP = Uo(x)), (1.9)
where
(U= SUP 0D (UDe= p (U= U)) (U)e= (U] - U7)
J t_.L. J ” Jx_h j+1 I 17_h ] -1

andh = (xg — X )/J andr are the space step size and time step size, respectively. It is e
to obtain two discrete conservative laws for the difference problem (1.7)—(1.9), namely

J-1 J-1
Hh=hY juM?=h>"|upf (1.10)
j=1 j=1
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and
n—-1J-1
Ep = ES + hr V2 (). (1.11)
k=0 j=1 t
where
EP hJ_1 SIS n|2
n=hY_[(up), [ +n Y Q(lupf). (1.12)
j=1 j=1

Comparing (1.10)—(1.12) with (1.4)—(1.6), we see that the difference scheme (1.7)—(
conserves the two invariants that the differential problem (1.1)—(1.3) possesses.

In Ref. [5], the scheme (1.7)-(1.9) was studied carefully. In particular, it was proved in
theoretically that under certain conditions, there exists a unique generalized solution ¢
problem (1.1)—(1.3); the scheme (1.7)—(1.9) is stable and its solution converges to the ut
solution of (1.1)—(1.3). In practice, however, the conservative scheme is difficult to use w
the nonlinear terng(s) in the GNLS equation is complicated, suchgs) =In(1+s).
Moreover, the calculation for the ratio

Q(up— Q(urP?)

U~ Jupf*

may also be difficult i11UJ-”+1|2 — |UJ'|is small. Therefore, some other difference schem:
may be more useful in practice.

The purpose of this work is to investigate eight finite difference schemes for solving
GNLS equation and evaluate their performance. Some of these schemes have been L
solve NLS in [6, 11] and we apply them to the GNLS equation here. We also introduc
new linearized Crank—Nicolson (C-N) scheme in which the extrapolation formulais app
only to the real coefficient of the nonlinear term. In solving nonlinear differential equatio
implicit schemes are often required in order to ensure the stability. In an implicit schen
system of nonlinear equations is solved at each time step. For this reason, implicit sch
are often very costly to compute. Explicit schemes can be constructed by using extrapol
and hopscotch techniques which will be emphasized in this paper. The former is use
approximate the nonlinear term and the latter is used to discretize the diffusion tern
this paper, these finite difference methods are used to solve the GNLS equation in
model problems: one-soliton solution and two-soliton solution for the cubico8aigér
equation, plane wave solution for the GNLS equation, and one-soliton solution for the GI
equation. In view of the results of the numerical experiments, we make the conclusion
the linearized C-N scheme is more efficient and more robust than the other seven schi
in general.

This paper is organized as follows. In the next section, we describe three model prob
of the GNLS equation. Eight finite difference schemes for solving the GNLS equation \
be introduced in Section 3, and discussions and analysis on the schemes will be giv
Section 4. In Section 5, we will present numerical results and conclusions.
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2. MODEL PROBLEM

We consider the finite difference solution of three model problems of the GNLS equat
and introduce eight difference schemes, which will be examined numerically in Sectior

2.1. The Cubic Schirdinger Equation
The cubic Schodinger equation is a basic GNLS equation, in wiich) = s.

(i) One-soliton solution.First, we consider the initial-value problem

iUt —Uyxx — 2UPu=0, t>0, (2.1)
Ult=—o = Up(X) = sechiXx + 2) - exp[-2i (X + 2)]. (2.2)

The exact solution of (2.1)—(2.2) is
u(x,t) = sechix + 2 — 4t) - exp[—i (2x + 4 — 3t)]. (2.3)
In our numerical calculation, two boundary conditions are added to (2.1)—(2.2),
Ulx=x, =0,  Ulx=xz =0, (2.4)

wherex, andXxgr are chosen to be large enough so that the solution of (2.1), (2.2), a
(2.4) approximately agrees with (2.3). Here, we yse- —15 andxg = 15, and the soliton
solution will be computed froh=0tot =1.

(ii) Collision of two solitons. Second, we consider interacting solitons for the cubi
Schidinger equation (2.1) with initial condition

Ult—o = Up(X) = sechx — 10) exp[—i (2x — 20)] + sechx + 10) exp[i (2x + 20)]. (2.5)
The exact solution of the initial-value problem (2.1) and (2.5) is

u(x, t) = sechix — 10 — 4t) exp[—i (2x — 20 — 3t)]
+ sechix + 10+ 4t) expfi (2x + 20+ 3t)]. (2.6)
The solution includes two solitary waves, which move in the opposite directions. Theol

ically, the two solitary waves should emerge from their interaction with their shapes a
velocities unchanged [13]. Many numerical results are consistent with the conclusion [

In our computation, we add the boundary condition (2.4) to the initial problem of (2.
and (2.5), and compute this problem in the time interval [0, 1]. In general, one choo
XL andxg larger than those in the last problem (2.1)—(2.2) in order to make the bound:
condition reasonabley = —20 andxg = 20 will be used in our numerical study.

2.2. Plane Wave Soliton for the GNLS Equation
The next problemto be solved is the periodicinitial-value problem of the GNLS equatio
iU — Uxx + g(Ju®)u =0, (2.7)
Ult=o = Uo(X), (2.8)
u(X + L) = ux). (2.9
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The problem (2.1)—(2.2) admits a progressive plane wave solution
ux,t) = A- expli (kx — wt)]. (2.10)
Substitution of (2.10) into (2.7)—(2.9) implies that
Uli=o = A - exp(ikx), (2.12)
and
w+k? 4 q(A%) = 0. (2.12)
We takeA=2, k=7, andL =2. Then
w=—n%—q(4),

and the velocity of the plane waveiis= 'nﬂ' We compute the plane wave in the time interva
[0, T], T = Z, during which the wave travels over one periog: 2.

o]

2.3. One-Soliton Solution for the GNLS Equation

Finally, we consider a more general problem:

iUt — Uxx + q(Juu = f(x, u, (2.13)
Ulx=x, =0, Ulxg =0, (2.14)
Ult—o = Uo(X). (2.15)

The right-hand sidd (x, t) can be chosen such that the exact solution is
u(x, t) = exp[—(x — ct)? + i (kx — wt)]. (2.16)
Substituting (2.16) into (2.13) and (2.15) gives
f(X, 1) = @+ 2ci (X — ct) — 4(x — ct)? + 4ik(x — ct) + k2 + 24 q(e2*"%") (2.17)
and
Uo(X) = exp(—x2 + ikx). (2.18)
We takex, = —15,xg=15c=2,k=—1, andw=—3. Then,
f(x, 1) = —4(x — ct)? 4 q (e 2xV7). (2.19)

The velocity of the soliton solution is 2. The soliton wave will be computed ftea® to
t=5.
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3. FINITE DIFFERENCE SCHEMES

In this section, we describe eight difference schemes for the GNLS equation (1.1) v
application to the three model problems described in the previous section. Some of
schemes have been used to solve the NLS equation in [11].

3.1. The Crank—Nicolson Implicit Scheme

The first difference scheme to be considered is the well-known implicit C-N schen
which is given by

. : 1 (Ur U
(1= 310P e 07+ o P oo

1
_ 2 fln+l/2(Un+l +U! ) (3_1)

This scheme is equivalent to the conservative scheme (1.7) when applied to the ci
Schiodinger equation sinog(s) = s and Q(s) = s?/2. However, (3.1) is more convenient
for implementation. The truncation error of this scheme is of o@l@r? + h?). According
to linearized stability analysis, this scheme is unconditionally stable.

A nonlinear iterative algorithm can be used to solve the system of the nonlinear equa
(3.1). The iterative algorithm for Eq. (3.1) can be written as

Un+1 un
|+y+;q<|( ) ‘ +| ’ ) 2f1n+1/2] (an+l)s+l

1
AU et ;

PP =07+ T (U - 20 + U7

(U + Jupf
q< j 5 j . fjn+1/2 an’

wherey = t/h?. The superscrips denotes theth iterate for solving the nonlinear differ-
ence equations at each time step. The initial ite(‘dﬁé*l)o is chosen as

2

T

2

0
(U™ = U},

In each iteration, a tridiagonal system of equations can be solved by Gaussian elimina
method. The iteration continues until the condition

1 -
ma (U] )™~ (U7 < 10°°

is satisfied, and the Vall{Eer]H)SJ”l is used aSJJ-”“. The iteration procedure is repeated at
each time level.



DIFFERENCE SCHEMES FOR SCHIDINGER EQUATION 403

3.2. A Three-Level Explicit Scheme

This is a classical explicit scheme with central difference in time for stability. The sche
for GNLS (1.1) is

n+1 _ yn-1
R

g = (U ra((upf)up = ooy 32)

The truncation error of this scheme is of or@r 2 4 h?). According to a linearized stability
analysis, this scheme is stable/if %1.

3.3. A Hopscotch Scheme

The GNLS equation (1.1) can be approximated in two steps: an explicit step at the
values of i+ j),

. 1
(U= (U e+ 5 [a(1Unal) Ul + a(upaf)ups] = 1oy @)
and an implicit step at the even values of ),
1
LU= (U)o 5 () Uit + a(Jur P ursd] = £ upe
(3.4)

Here, U™ at the odd values ofn(+ j) can be calculated by (3.3) and theri** at the
even values ofr(+ j) by (3.4). Therefore, (3.4) becomes an explicit formula. Combinir
(3.3) with (3.4), Eq. (3.3) may be replaced by the extrapolation formula

UMt =2u —uUPt,  forodd values ofn+ j). (3.5)

This scheme is unconditionally stable by means of linearized stability analysis. Its ti
cation error will be analyzed in Section 4.

3.4. Linearized Crank—Nicolson Scheme |

In the C-N implicit scheme (3.1), one has to solve the nonlinear difference equati
iteratively at each time step. This is time consuming in general. In order to avoid
iterative process, we consider an extrapolation formula to approximate the nonlinear
and obtain the linearized C-N scheme

i(anH)(_%((UJnH)xi_’_(U )ye) + q(]U { ) (’U” 1’ )Un 1
_ 1fn+1/2(Un+l+U ) (3-6)

2]

This is a semi-implicit method, because only a linear tridiagonal system of equations n
to be solved at each time level. The truncation error of this scheme is of Or@ér+ h?).
The scheme is unconditionally stable by a linearized stability analysis.

In [10], this linearized C-N scheme was used to compute the two-dimensional ct
Schidinger equation.
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3.5. Linearized Crank—Nicolson Scheme Il

Inthe above linearized C-N scheme (3.6), the extrapolation formulais used to approxin
the entire nonlinear term(|U |?)U . Next, we present a new linearized C-N scheme. In thi
scheme, the extrapolation formula is used to approximate only the real coeftjcignt)
of the nonlinear term, and the scheme can be written as

. 1 1/3 1 _
(0P~ (U7 (UD) + 5 (3a(197) = Fa(lup ) e+ up)
1
= SfHTAU D). (3.7)

The scheme (3.7) is expected to be more efficient than (3.6), since the former uses
extrapolation for the real coefficient of the nonlinear term only. Furthermore, as we w
show in the Section 4, the scheme (3.7) satisfies a conservation law. The truncation err
this scheme is also of ord€@ (2 + h?). It is unconditionally stable by means of linearized
stability analysis.

3.6. Hopscotch Scheme with Extrapolation

Inthis scheme, the hopscotch algorithmis used for the diffusion term and the extrapola
formula is used for the nonlinear term as used in (3.6). Then we have

i 1/3 2 1 —112
(= Ut 3 ( 50(107F) = 3a(1up ) )+ up)
= %fj”“/z(uj“*lJruj"), (3.8)

if (n+ j) is odd, and

. 1/3 1 B
(0= (7)o 5 (a(1077) = Ga(lupF) ) e+ o)

1 nt!l

=5 M U+ Up), (3.9)

if (n+ j) is even. This scheme is unconditionally stable in linear stability analysis and
truncation error will be analyzed in Section 4.

3.7. Pseudospectral Scheme (Fornberg and Whitham)

Using the idea of Fornberg and Whitham [12], the GNLS equation (1.1) is approximat
by
Upt = Ut 2iF (sin( S 2 ) Raum ) + 2iea(JUTP)up - 2icte T
P =U 2R (sin| 5 (UM +|rq(’ J|> P—2rfl-un,
(3.10)

whereP is half the length of the space interval of interest &dlenotes a discrete Fourier
transform. This scheme is unconditionally stable according to linear analysis. Its trunca
error is of orderO(z? 4+ h™), wherem depends on the smoothness of the exact solutior
We can taken to be any positive number for our test problems in this paper.
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3.8. Split Step Fourier Method
According to the algorithm in [11], the split step Fourier is given by

U(x, t + 7) = exp @UEDP =T (¢ 1), (3.11)

an+1 —U(x,t+71) = Fj—l(exp(iKZmZ/pZ) Fk(fj (X, t+ 1—))). (3.12)

This scheme is unconditionally stable by means of linear analysis. Its truncation err
of order O(r2 + h™), which is the same as the pseudospectral scheme (3.10). It has |
noted that the calculation in (3.10) and (3.12) can be performed in terms of FFT.

4. DISCUSSIONS OF THE FINITE DIFFERENCE SCHEMES

In this sections, we discuss some properties of the difference schemes introduced |
previous section.

4.1. Conservation Properties

The initial-boundary value problem of the GNLS equation (1.1)—(1.3) satisfies two ¢
servation laws given by (1.4)—(1.6). It is desirable for a finite difference scheme to pres
discrete analogoues of these invariant quantities. We have the following result abou
conservation properties.

ProrPosITION Three difference schemes of Sectigntt® Crank—Nicolson implicit
scheme(3.1), the three level explicit scheni8.2), and the Crank—Nicolson scheme I
(3.7),satisfy some discrete conservation laws.

Specificallyscheme$3.1)and(3.7) satisfy H, = constwhere H,=h Zf;ll |UJ”|2, and
schemd3.2) satisfies U], U =h 37—} UM*UT = const

Proof: LetU™"2=1U* 4+ UM). Then

1
i ((UJ!"H’].)F, 2U jn+1/2) B 5 ((an+1) i + (an) . U jn-¢-1/2)

u™L? o junl?

(1720 + 7). 2019,

=

T2
or

1
(U715, 2072) = S0P (UF) 0 2027)

u™L? L junf?
+2q<| J |2+| l| )(U?+1/2,U?+1/2)

_n+% (U _n+1/2, U _n+1/2) _ (4.1)

=2f1 j j
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Since((UMhg, 2072 = LM —ul, UMt 4 UD), we have
Re((U]*4) 207%) = T Re(UI —UP, UP* 4 u7) = (Ju - up ).
Also,

(UF) 0+ (U]) 0 207 4) = 2((U]H2) 5, U] )

XX’ J J

NI =

— —2((U _n+l/2)x’ (U _n+l/2) ) 2|< n+1/2)

2
J J | :

X

Thus all the terms except the first one in Eq. (4.1) are real. Taking the imaginary par
(4.1) and summing it ovef, we obtain

J—

=

J-1
|U{‘+1]2:Z]UH2, for all n.
=1 =1

This shows that scheme (3.1) satisfies the conservatiohjaw const. Similarly, it can be
verified thatHy, = const for scheme (3.7).

Taking inner product of (3.2) withJ}', the same procedure as above for scheme (3.
leads to

J-1
h(U*tul) =h Z U*UT = const
i1

This completes the proom

The linearized C-N scheme | does not satisfy any conservation laws, since the extre
lation is applied to the entire nonlinear term. Schemes (3.3)—(3.4) and (3.8)—(3.9) are
conservative either, since implicit and explicit steps are used alternatively in these schel
The pseudospectral scheme (3.10) and split step Fourier method (3.11)—(3.12) are not
servative because the higher order derivative term is approximated by discrete transf
None of the eight schemes satisfies the conservation law (1.11)—(1.12)Ebout

4.2. Comparison of the Linearized C-N Schemes | and

In the previous subsection, we have shown that the linearized C-N scheme Il adr
an invariantHy, but the linearized C-N scheme | is nonconservative. In the following, w
compare the two schemes further by studying plane wave solutions.

The test problem in subsection 2.2 admits plane wave solutions of the form (2.8).
discrete analogue of a plane wave solution is

ikjh
Ul = Arnekin, (4.2)

whereA, A, andk are constants independentrofind j. Substituting (4.2) into (3.7) and
noting
4

o1
(U)o = AN (@0 =24 &) = — U] sm2
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we obtain
i 2 . , kh
';(uj”“—ul-”)+ﬁ(uj“+1+uj“)sm27
1 3 A ny2 1 A)\n—lz Un+1 Un _0
+§ EQ(( I/\I))—EQ(( IA"H2) ) ( i+ ,—)—
or

[ 2 ,kh 1/3 hoy 1 12 B
;(x—1)+ (ﬁ sm27 + é(éq((Am %) — Eq((AW ) )))()»-i-l) =0.

Solving the above equation fargives

_ st 5 - 5 (Ga(CARM?) -

N 2 a((AIA"H?))
T i+ Zsif K 4 I (3q((AAM2) -

q((AIANH2))

NI |NI-

Since the numerator and denominator are complex conjugates, wghave. Therefore,
the linearized C-N scheme Il admits plane wave solutions, and the scheme is nondissip
Let A =e 7. The dispersion relation of the scheme is

ik rq(AY)
w = —— arcsin

= —(k? + q(A?) + O(z?).
T 1+ 72(Zsir? ¥ 4 1q(A%)° q !

Comparing this with the dispersion relation (2.12) of the GNLS equation, we see that
phase error i©(7?).
For linearized C-N scheme I, substituting (4.2) into (3.6) leads to

. 2t . ,kh . 2t . ,kh 3¢ n T ne
22 (u +13 sir? 2> — x<| -1z sir? > - ?q((Am )2)> - Eq((A|x| H?) =o.
(4.3)

Clearly, any roo. of Eq. (4.3) is a function of. Therefore, no plane wave solution exist:
for the linearized C-N scheme |. To estimate the phase error, we substittde " into
(4.3) and assumig.| = 1+ O(z?). This results in

4 kh
=140 2 si? 2 +7q(A2) | + O(?).
h? 2
Then, an approximate dispersion relation is

o = —(K?+q(A?) + O().

It is obvious that the phase error in the linearized C-N scheme | is larger than that in
linearized C-N scheme II.
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4.3. Truncation Errors of the Hopscotch Schemes

By using Taylor expansion and the estimation of the error between the continuous Fou
transform and discrete Fourier transform, it is straightforward to verify that the truncati
errors for the six schemes except the hopscotch-type schem@s#te- h?) or better.

In the hopscotch scheme (3.3)—(3.4), implicit and explicit steps are performed alter
tively. For a fixedj, the solution is computed by (3.4) at a time stefy (3.3) at time step
m+ 1, and by (3.4) again at time stap+ 2. At the time stepn+ 1, this is equivalent to a
three-level scheme given by

U_m+1 _ U_mfl

i%—Z(U ™) oz +Q(‘U1+1 ) jrll"‘q(!UP—l’z)Uim—lz fr-upn.

Its truncation error i€ (2 + h?). At the time stepn + 2, the scheme is equivalent to

=L — (U)o (UD),) + 5 (a (U2l U + g (Jupe ) u

T J XX

+a((Umf)urs +a(Upsf)ur) = P2 up e . @

By Taylor expansion, we see that the truncation error of (4.4) is of @def + h2+12/h?),
which is also true for many other physical equations. Therefore, the condition(h) is
required in the hopscotch schemes to ensure the convergence.

5. NUMERICAL EXPERIMENTS AND CONCLUSIONS

In this section, we use the eight difference schemes to compute the three test prob
given in the previous section. To compare the results, we use the approach of [11]. In
approach, we fix the accuracl {) fromt=0tot =T, and leave step sizésandz free.
We then compare the computing time required to attain such accuracy for various cho
of the parameters. For each scheme, the step Biaadr are chosen such that the scheme
is stable and the least computing time is used to attain the given accuracy.

The following notation will be used when presenting the results,

(M- )
Vl— Tv
(E3 - E9)

=

Loo = maxUf —u(x;.t")

Vo =

)

and
Ry = Loo/mjax|u(x,-,t )

whereu(x;, t") is the exact solution at the point;( t").
The eight schemes are used for all the three-model problems. The computing times
solving the problems to a given accuracy are reported in Tables I-V. In each table, the

El
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TABLE |
Comparison of the Computing Time Required to Attain an Accuracyl ., <0.01
from t=0tot=1 for the Model Problem 2.1(i)

409

No. Method Step size Time(s) ko V1 Vs, Ratio
1 C-N scheme h =0.05 9.34 0.0091  0.00000  0.00000 1
v = 0.008
2 Explicit scheme h = 0.06 12.84 0.0098 0.00000 0.00000 1.37
7 = 0.0009
3 Hopscotch scheme | h=01 1.57 0.0081 0.00003 0.00021 0.17
7 =0.003
4 Linearized C-N scheme | h =0.05 5.44 0.0094 0.00002 0.00003 0.58
7 = 0.005
5 Linearized C-N scheme Il h =0.05 3.87 0.0098  0.00000  0.00002 0.41
v = 0.007
6 Hopscotch scheme Il h =0.05 20.32 0.0097  0.00000  0.00001 2.18
r = 0.0005
7 Pseudospectral scheme  h = 0.15625 3.56 0.0011 0.00008 0.00010 0.38
7 = 0.004
8 Split step Fourier method h = 0.15625 1.13 0.0038 0.00005 0.00007 0.12
7 =0.004
TABLE I
Comparison of the Computing Time Required to Attain an AccuracylL ., <0.01
from t=0 tot=1 for the Model Problem 2.1(ii)
No. Method Step size Time(s) L V1 V, Ratio
1 C-N scheme h =0.05 13.56 0.0091  0.0000 0.0000 1
7 =0.008
2 Explicit scheme h =0.05 21.57 0.0082  0.00000  0.00000 1.59
7 = 0.0006
3 Hopscotch scheme | h=01 2.34 0.0081  0.00003  0.00021 0.17
v = 0.003
4 Linearized C-N scheme | h=0.05 8.91 0.0094 0.00002 0.00000 0.66
7 = 0.005
5 Linearized C-N scheme Il h = 0.05 6.09 0.0098 0.00000 0.00000 0.45
T = 0.007
6 Hopscotch scheme Il h=0.04 62.04 0.0083 0.00001 0.00000 4.58
7 = 0.0004
7 Pseudospectral scheme  h = 0.15625 8.82 0.0050 0.00003 0.00007 0.65
7 = 0.002
8 Split step Fourier method h = 0.15625 12.78 0.0087 0.00002 0.00003 0.94

T =0.001
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Comparison of the Computing Time Required to Attain an AccuracyL ., <0.02 for
Computations of the Plane Wave fromt=0tot= %" for the Model Problem 2.2

No. Method q(S Step size  Time (s) [ Vi Vs Ratio
1 C-Nscheme 3 h =0.04 0.35 0.0181 0.00000 0.00000 1
r = 0.004
—% h =0.02 1.09 0.0112 0.00003 0.00003 1
t =0.01
InN1+9S h=0.04 0.65 0.0177 0.00001 0.00001 1
t = 0.005
2 Explicit scheme S h =0.04 0.36 0.0060 0.00000 0.00000 1.03
t = 0.00039
—% h =0.025 5.87 0.0103  0.00000 0.00000 5.39
r = 0.00015
Inl+9S h=0.04 0.97 0.0142 0.00000 0.00000 1.49
7 = 0.00039
3 Hopscotch scheme | 52 h =0.02 7.04 0.0179  0.00004 0.00007 20.11
= 0.00005
—% h =0.04 0.92 0.0105 0.00001 0.00001 0.84
r = 0.0008
InN1+9S h=0.02 8.57 0.0101 0.00016 0.00537 13.18
t = 0.0001
4 Linearized C-N scheme| & h=0.02
7 = 0.00001
—#  h=002 Ly > 04
t = 0.00001
Inl+9S h=0.02
7 = 0.00001
5 Linearized C-N scheme Il & h=0.04 0.17 0.0176  0.00000 0.00000 0.49
r = 0.004
7% h =0.02 0.53 0.0111 0.00003 0.00003 0.49
 =0.01
Inl+9S h=0.04 0.32 0.0177 0.00001 0.00001 0.49
v = 0.005
6 Hopscotch scheme I $  h=004 1.30 0.0098  0.00004 0.00007 3.71
7 = 0.0002
—% h =0.02 10.28 0.0180 0.00009 0.00008 9.43
t = 0.0002
Inl+9S h=0.04 3.32 0.0174 0.00001 0.00116 9.22
© = 0.0002
7 Pseudospectral scheme S h=0.25 0.16 0.0137 0.00106 0.00180 0.46
t = 0.003
—% h =0.3125 0.54 0.0135 0.00002 0.00002 0.50
7 = 0.008
Inl+9S h=0.3125 1.09 0.000018 0.00001 0.00001 1.68
7 =0.001
8 Split step Fourier method & h=0.125 0.53 0.0185 0.00187 0.00235 1.51
7 = 0.002
_% h = 0.15625 1.06 0.0174 0.00005 0.00004 0.97
t = 0.008
InN1+9S h=0.3125 1.14 0.0047  0.00001 0.00001 1.75

7 =0.001
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TABLE IV
Comparison of the Computing Time Required to Attain an Accuracyl ., <0.05
for Computations from t=0tot =5 for the Model Problem 2.3

No. Method q(S) Step size Time (s) [ V1 Ratio
1 C-N scheme S h=0.1 13.54 0.0314  0.00000 1
t =0.01
f% h=01 13.85 0.0490 0.00000 1
t =0.01
In1+ 9 h=01 14.27 0.0466 0.00000 1
=001
2 Explicit scheme 3 h=01 15.01 0.0334 0.00000 1.11
= 0.0008
—% h=0.1 25.89 0.0471 0.00000 1.87
v = 0.0005
In1+9 h=0.1 26.94 0.0419 0.00000 1.74
7 = 0.0005
3 Hopscotch scheme | S h =0.08 14.78 0.0472  0.00000 1.09
7 =0.001
f% h=01 6.85 0.0499 0.00002 0.49
7 =0.003
In1+9 h =0.05 26.82 0.0433 0.00000 1.88
v = 0.001
4 Linearized C-N scheme | S h =0.05
v = 0.0001
—fs h =0.05 L, >04
v = 0.0001
In1+ 9 h =0.05
v = 0.0001
5 Linearized C-N scheme Il S h=01 2.16 0.0397 0.00001 0.16
r =0.02
—% h=01 4.47 0.0497 0.00001 0.32
=001
In1+9 h=0.1 4.64 0.0433  0.00000 0.33
t =0.01
6 Hopscotch scheme I S h=01 19.01 0.0374 0.00003 1.40
T =0.001
—% h =0.08 23.75 0.0376  0.00003 1.71
v =0.001
In1+ 9 h=01 20.12 0.0457 0.00001 1.41
r =0.001
7 Pseudospectral scheme S h =0.625 8.23 0.0103 0.00005 0.61
= 0.0005
—fs h =0.625 5.57 0.0131  0.00008 0.40
v = 0.0008
In1+9 h =0.625 4.93 0.0111 0.00004 0.35
r =0.001
8 Split step Fourier method S h=0.3125 14.38 0.0432 0.00007 1.06
v = 0.0003
f% h =0.3125 10.76 0.0275 0.00006 0.78
v = 0.0007
In1+ 9 h =0.625 5.06 0.0169 0.00002 0.36

7 =0.001
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TABLE V

Comparison of the Computing Time Required to Attain an AccuracylL ., <0.01

for Computations from t=0 to t =5 for the Model Problem 2.3

No. Method q(S Step size Time (s) [ Vi Ratio
1 C-N scheme S h =0.04 32.85 0.0082  0.00000 1
t =0.01
—% h =0.04 40.72 0.0091  0.00001 1
t = 0.008
In1+9 h =0.04 34.11 0.0094  0.00000 1
t =0.01
2 Explicit scheme S h=0.04
t = 0.00001
—% h =0.04 L, > 0.01
t = 00001
In1+9 h =0.04
t = 0.00001
3 Hopscotch scheme | S h=0.04 227.79 0.0090 0.00001 7.01
v = 0.0002
—% h =0.03 154.71 0.0079  0.00001 3.80
r = 0.0004
In1+9 h =0.03 319.91 0.0074  0.00001 9.38
t = 0.0002
4 Linearized C-N scheme I 53 h =0.04 10.65 0.0067  0.00000 0.32
=001
—% h =0.04 13.10 0.0099  0.00001 0.32
t = 0.008
In1+9 h =0.04 11.31 0.0086  0.00000 0.33
t =0.01
5 Hopscotch scheme Il S h =0.04 394.96 0.0070 0.00000 12.15
t = 0.0002
—% h =0.04 403.45 0.0083  0.00000 9.91
v = 0.0002
In1+9 h =0.04 414.45 0.0081 0.00001 12.15
t = 0.0002
6 Pseudospectral scheme S h =0.3125 11.69 0.0076  0.00003 0.36
r =0.001
—ﬁ h =0.3125 14.84 0.0045  0.00002 0.36
t =0.001
In1+9 h =0.3125 11.36 0.0068  0.00001 0.33
7 = 0.0008
7 Split step scheme S h = 0.15625 17.64 0.0094  0.00005 0.54
t = 0.0007
—% h = 0.15625 19.81 0.0069  0.00004 0.49
v = 0.0008
In1+9 h =0.3125 12.78 0.0051  0.00001 0.38

7 = 0.0008
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two columns indicate the scheme used. The third column shows the space and time
used in the computation. The fourth column reports the CPU time used to solve the prol
to a given accuracy, and the fifth column shows the actual accuracy of the computed solt
Columns six and seven show how well a scheme conserves the invariant quantities (
(1.6). The last column gives the ratio of the CPU time of a scheme over that of the imp
C-N scheme. It shows how efficient a scheme is compared with the implicit C-N sche
All calculations are performed on a SUN workstation. First, we use the eight scheme
compute the one-soliton solution and two-soliton solution of the cubicdslalgér equation.
The computational results are given in Tables | and II, whege< 0.01, i.e.,Ry, < 1%,
is required. Second, the plane wave with periog 2 is computed and.,, <0.02, i.e.,
R < 1%, is required, and the corresponding results are given in Table Ill. Finally, |
computational results for the GNLS equation are given in Tables IV and V.

From these numerical results, we can make the following observations:

(1) It follows from Tables | and Il that all eight schemes are capable of computi
both the one-soliton solution and the two-soliton solution to the cubicf8atgéer equation.
One can use larger time step for the implicit C-N Scheme (3.1) and, larger space ste
the pseudospectral scheme (3.10) and the split step Fourier method (3.11)—(3.12). F
cubic Schodinger equation, the hopscotch scheme | (3.3)—(3.5) is very efficient. The s
step Fourier method takes the least computing time among all eight schemes only for
and one-soliton model. These two linearized C-N schemes (3.6) and (3.7) are better
the implicit C-N scheme (3.1) for NLS.

(2) The implicit C-N scheme (3.1) is a robust algorithm for the GNLS equation. T
step sizes and the computing time are not sensitive to the furggtion

(3) Ingeneral, the pseudospectral scheme (3.10) and the split step Fourier metho
less computing time, but they do not keep conservative laws well. In order to attain be
accuracy, one hastotake a smalltime step size. The split step Fourier method (3.11)—(3.
accurate only when solution varies slowly with time. Otherwise, the method is not efficie
since the accuracy of the formula (3.11) depends on theqgptx, t)|%), in general.

(4) Overall, the linearized C-N scheme 1l (3.7) is the most efficient of the eig
schemes. Especially for the model problem (2.3), the one-soliton solution of the GP
equation, the ratio of the computing time is less than 0.33, because the gradient of the
tion is larger than the gradients of problems (2.1) and (2.2). The numerical results cor
our analysis in Section 4 for the linearized C-N scheme II.

(5) The explicit scheme (3.2) may be used to compute the GNLS equation if high
curacy is not required. According to linearized stability analysis, the scheme (3.2) is st
if y =7/h? < 1/4. In the computations, we see that the scheme (3.2) with the time step
7 =h?/4 works well only for the cubic Schdinger equation. For the model problem (2.2)
the time step size should be strictly less thaf /4 for stability. The numerical results for
the model problem (2.3) show that the scheme is unstable£00.1, t = 0.001.

(6) The hopscotch scheme | (3.3)—(3.5) is very sensitive to the solution and the r
linear termq(s). Itis the most efficient scheme for the cubic Smfiiger equation, but takes
the most computing time for problem (2.2) witlts) = s? or q(s) = In(1 + s). In addition,
the computing time for solving the problem witlis) = —4s/(1 + s) is much less than that
for q(s) =s? or q(s) = In(1 + s). It can be observed from Tables |-V that the conditiol
7 < h?is necessary. This observation is consistent with our analysis that the truncation «
of this scheme is of ordeD(z? + h? + t2/h?).
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(7) Thelinearized C-N scheme (3.6) can only be used to compute the cubicBajer
equation and is unsatisfactory when applied to the GNLS equation. Our numerical res
show that scheme (3.6) is stable and the solution is bounded as time increases. Howeve
the GNLS equation, the computational ertqy, is always too large to satisfy the accuracy
requirement no matter how smallandt are taken. This observation can be explained a
follows. Because the scheme has a phase err@ (o, a very smallr will be needed to
reduce this phase error to the given tolerance due to the low accuracy of the scheme. Tl
fore, a large number of time steps are needed to compute the solution in a given, time
and round-off error becomes dominant so that the computed error will always remain ab
tolerance.

(8) The hopscotch scheme with extrapolation (3.8)—(3.9) can be used to comf
all three-model problems, but it takes more computing time when solving the GNI
equations.

We have presented a new linearized C-N-type finite difference scheme based on the u
an extrapolation technique and compared with other seven existing finite difference sche
by examining three-model problems of a nonlinear generalize8ctgér equation. It is
proved that the scheme satisfies a basic conservation law and is of good dissipation
dispersion. Our numerical experiments demonstrate that the linearized C-N scheme Il (
is most efficient and robust in general for solving the GNLS equation. Some other schel
can be efficient for some special model problems. Numerical observations and sugges
have been made, which may be helpful in choosing a suitable scheme for a special
Since the underlying GNLS equation contains a complicated nonlinear term which of
appears in many other physical equations, our work will provide some useful informati
for solving other nonlinear partial differential equations.
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